Inactivation of Cg10062, a cis-3-Chloroacrylic Acid Dehalogenase Homologue in Corynebacterium glutamicum, by (R)- and (S)-Oxirane-2-carboxylate: Analysis and Implications†
نویسندگان
چکیده
( R)- and ( S)-oxirane-2-carboxylate were determined to be active site-directed irreversible inhibitors of the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) homologue Cg10062 found in Corynebacterium glutamicum. Kinetic analysis indicates that the ( R) enantiomer binds more tightly and is the more potent inhibitor, likely reflecting more favorable interactions with active site residues. Pro-1 is the sole site of covalent modification by the ( R) and ( S) enantiomers. Pro-1, Arg-70, Arg-73, and Glu-114, previously identified as catalytic residues in Cg10062, have also been implicated in the inactivation mechanism. Pro-1, Arg-70, and Arg-73 are essential residues for the process as indicated by the observation that the enzymes with the corresponding alanine mutations are not covalently modified by either enantiomer. The E114Q mutant slows covalent modification of Cg10062 but does not prevent it. The results are comparable to those found for the irreversible inactivation of cis-CaaD by ( R)-oxirane-2-carboxylate with two important distinctions: the alkylation of cis-CaaD is stereospecific, and Glu-114 does not take part in the cis-CaaD inactivation mechanism. Cg10062 exhibits low-level cis-CaaD and trans-3-chloroacrylic acid dehalogenase (CaaD) activities, with the cis-CaaD activity predominating. Hence, the preference of Cg10062 for the cis isomer correlates with the observation that the ( R) enantiomer is the more potent inactivator. Moreover, the factors responsible for the relaxed substrate specificity of Cg10062 may account for the stereoselective inactivation by the enantiomeric epoxides. Delineation of these factors would provide a more complete picture of the substrate specificity determinants for cis-CaaD. This study represents an important step toward this goal by setting the stage for a crystallographic analysis of inactivated Cg10062.
منابع مشابه
Characterization of Cg10062 from Corynebacterium glutamicum: Implications for the Evolution of cis-3-Chloroacrylic Acid Dehalogenase Activity in the Tautomerase Superfamily†
A 149-amino acid protein designated Cg10062 is encoded by a gene from Corynebacterium glutamicum. The physiological function of Cg10062 is unknown, and the gene encoding this protein has no obvious genomic context. Sequence analysis links Cg10062 to the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) family, one of the five known families of the tautomerase superfamily. The characterized taut...
متن کاملPre-steady-state kinetic analysis of cis-3-chloroacrylic acid dehalogenase: analysis and implications.
Isomer-specific 3-chloroacrylic acid dehalogenases catalyze the hydrolytic dehalogenation of the cis- and trans-isomers of 3-chloroacrylate to yield malonate semialdehyde. These reactions represent key steps in the degradation of the nematocide, 1,3-dichloropropene. The kinetic mechanism of cis-3-chloroacrylic acid dehalogenase (cis-CaaD) has now been examined using stopped-flow and chemical-qu...
متن کاملCharacterization of a newly identified mycobacterial tautomerase with promiscuous dehalogenase and hydratase activities reveals a functional link to a recently diverged cis-3-chloroacrylic acid dehalogenase.
The enzyme cis-3-chloroacrylic acid dehalogenase (cis-CaaD) is found in a bacterial pathway that degrades a synthetic nematocide, cis-1,3-dichloropropene, introduced in the 20th century. The previously determined crystal structure of cis-CaaD and its promiscuous phenylpyruvate tautomerase (PPT) activity link this dehalogenase to the tautomerase superfamily, a group of homologous proteins that a...
متن کاملDegradation of 1,3-dichloropropene by pseudomonas cichorii 170.
The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1, 3-dichloropropene, could utilize low concentrations of 1, 3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different de...
متن کاملtrans-3-Chloroacrylic acid dehalogenase from Pseudomonas pavonaceae 170 shares structural and mechanistic similarities with 4-oxalocrotonate tautomerase.
The genes (caaD1 and caaD2) encoding the trans-3-chloroacrylic acid dehalogenase (CaaD) of the 1,3-dichloropropene-utilizing bacterium Pseudomonas pavonaceae 170 were cloned and heterologously expressed in Escherichia coli and Pseudomonas sp. strain GJ1. CaaD is a protein of 50 kDa that is composed of alpha-subunits of 75 amino acid residues and beta-subunits of 70 residues. It catalyzes the hy...
متن کامل